Search This Blog

22 September 2009

Follow-on to 2005 paper on sunspots, solar wind and Propagation

New research finds that the number of sunspots provides an incomplete measure of changes in the Sun's impact on Earth over the course of the 11-year solar cycle. The study, led by scientists at the High Altitude Observatory of the National Center for Atmospheric Research (NCAR) and the University of Michigan, finds that Earth was bombarded last year with high levels of solar energy at a time when the Sun was in an unusually quiet phase and sunspots had virtually disappeared.

Scientists previously thought that the streams largely disappeared as the solar cycle approached minimum. But when the study team compared measurements within the current solar minimum interval, taken in 2008, with measurements of the last solar minimum in 1996, they found that Earth in 2008 was continuing to resonate with the effects of the streams. Although the current solar minimum has fewer sunspots than any minimum in 75 years, the Sun's effect on Earth's outer radiation belt, as measured by electron fluxes, was more than three times greater last year than in 1996.


When the solar cycle was at a minimum level in 1996, the Sun sprayed Earth with relatively few, weak high-speed streams containing turbulent magnetic fields (left). In contrast, the Sun bombarded Earth with stronger and longer-lasting streams last year (right) even though the solar cycle was again at a minimum level. The streams affected Earth's outer radiation belt, posing a threat to earth-orbiting satellites, and triggered space weather disturbances, lighting up auroras in the sky at higher latitudes. (Illustration by Janet Kozyra with images from NASA, courtesy Journal of Geophysical Research - Space Physics.)

No comments:

Post a Comment